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Sepsis therapies: learning from 30 years of failure
of translational research to propose new leads
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Abstract

Sepsis has been identified by the World Health Organization
(WHO) as a global health priority. There has been a tremendous
effort to decipher underlying mechanisms responsible for organ
failure and death, and to develop new treatments. Despite saving
thousands of animals over the last three decades in multiple
preclinical studies, no new effective drug has emerged that has
clearly improved patient outcomes. In the present review, we
analyze the reasons for this failure, focusing on the inclusion of
inappropriate patients and the use of irrelevant animal models.
We advocate against repeating the same mistakes and propose
changes to the research paradigm. We discuss the long-term
consequences of surviving sepsis and, finally, list some putative
approaches—both old and new—that could help save lives and
improve survivorship.
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Sepsis: a new WHO global health priority

Sepsis was previously considered an infectious systemic inflamma-

tory response syndrome (SIRS; Bone et al, 1992; Levy et al, 2003).

However, recognizing that this host response is usually part and

parcel of an individual’s appropriate defense against infection,

sepsis was re-defined in 2016 (“Sepsis-3”) as “a life-threatening

organ dysfunction caused by a dysregulated host response to infec-

tion” (Fig 1) (Singer et al, 2016). For clinical operationalization,

organ dysfunction is identified by an increase from baseline of ≥ 2

points in the Sequential Organ Failure Assessment (SOFA) score.

Patients are identified as having septic shock when vasopressors are

required to maintain a mean arterial pressure ≥ 65 mmHg and when

serum lactate levels remain > 2 mmol/l (>18 mg/dl) despite

adequate volume replacement.

In 2017, the WHO passed a resolution, recognizing sepsis as a

global health priority (Reinhart et al, 2017). A recent investigation

estimated that in 2017, sepsis occurred in 48.9 million people

worldwide, ending to the death of 11 million patients (Rudd et al,

2020). These estimates are more than double previous global fig-

ures (Fleischmann et al, 2016). This increase is probably attribu-

table to inclusion of more data from low-income and middle-

income countries, locations where sepsis incidence and mortality

are considerably higher and for which data were previously under-

represented. It is also unclear how many people die “of” or “with”

sepsis as the majority of deaths, at least in developed countries,

occur in patients who are elderly, frail, and/or have significant

underlying comorbidities. National Health Service data from

England suggest that 77.5% of deaths occur in those aged

≥ 75 years (Singer et al, 2019). The incidence of sepsis is also

reported to be rising at an alarming rate though such data should

be treated cautiously. While in part due to an aging population

and increasing invasive medical interventions, increased awareness

of the condition and significant financial incentivizations to use

administrative sepsis codes play an important part in the reported

incidence increase. Indeed, Rhee et al (2017) indicated that sepsis

incidence based on Sepsis-3 clinical criteria was stable over a 5-

year period in 409 US hospitals (0.6% relative increase per year),

yet had risen by 10.3% per year according to insurance claims

data. By 2014, the incidence of sepsis was twice as high, affecting

12% of the total hospital cohort, using claims-based data. This

large rise in denominator also generated a spurious reduction in

the rate of death or discharge to hospice, namely 4.5% per year

using claims data compared to 1.3% using clinical data.

These conflicting data on incidence and outcomes reflect

considerable inconsistencies within the literature, particularly as

most of the data are extracted from hospital administrative data-

bases or insurance claims data that are prone to the confounders

described above. Nonetheless, it is fair to say that sepsis contin-

ues to be a significant healthcare issue with high mortality (ap-

proximately 25% for sepsis and 40–50% for septic shock

(Shankar-Hari et al, 2017) and morbidity, and with a major

impact on resource utilization. This continues after discharge

from hospital, as survivors often suffer post-sepsis symptoms

such as fatigue, neuromuscular weakness, chronic pain, post-

traumatic stress disorder, cognitive impairments, and depression.
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Furthermore, sepsis has a high price to insurance systems

(Arefian et al, 2017).

Notwithstanding coding anomalies, mortality from sepsis does

appear to be improving. This is mainly the consequence of

improved health care with earlier recognition and treatment, and

less iatrogenic harm. Multiple studies in intensive care patients have

demonstrated an injurious impact from over-exuberant use of

mechanical ventilation, fluid therapy, sedation, nutrition, and

inotropes, to name but some interventions. Unfortunately, these

outcome improvements cannot be attributed to introduction of new

therapies, nor to a better understanding of the pathophysiology.

This is not for the lack of clinical trials undertaken over the last

30 years, started after successful outcomes in animal models that

are often reported in high impact journals. The failure of this trans-

lational research should raise questions within the medical and

scientific communities, and inspire them to avoid perpetuating

expensive experimental animal studies and clinical trials without

modifying the underlying paradigms. Several published articles have

already explored the reasons for these failures (Rittirsch et al, 2007;

Dyson & Singer, 2009); however, no significant changes have

emerged.

Well-established processes and new concepts

Molecular players
New findings are constantly enlightening our understanding of the

pathophysiological processes involved in sepsis. Most of the players

involved have likely been identified (Fig 2). The host response is initi-

ated by both pathogen-associated molecular patterns (PAMPs), such

as endotoxin and lipoteichoic acid, and damage-associated molecular

patterns (DAMPs), such as heat shock proteins, high mobility group

box 1, nucleotides, and mitochondria released from injured host cells.

Activation of the complement system has long been recognized as

a potentiator of the inflammatory response during sepsis, in particular

the role played by anaphylatoxin C5a (Riedemann et al, 2002). An

inhibitor of C5 cleavage showed reduced organ damage and better

outcome in a baboon model of Escherichia coli sepsis (Keshari et al,

2017). Similarly, modifying the coagulation cascade has been

advanced with numerous successful approaches in animal sepsis

models targeting pro-coagulant factors (Levi & van der Poll, 2017).

Various other molecular players have been identified as performing

a beneficial role in murine cecal ligature and puncture (CLP) models

of sepsis. These include IL-33 and IL-38 (Li et al, 2016; Xu et al,

Glossary

Autophagy
A natural, regulated mechanism of the cells that removes
unnecessary or dysfunctional components within the cytoplasm. It
allows the orderly degradation and recycling of cellular components.
Cecal Ligation and Puncture (CLP)
A common rodent model of sepsis following surgery with ligation
and puncture of the cecum, which induces a polymicrobial septic
insult (peritonitis).
Compartmentalization of the immune response
A differential polarization of the immune response in different
tissues and organs that is regulated by the local
microenvironments ending to specific responses of cells.
Endothelial permeability
An inflammation-induced impairment of the dynamic barrier
between endothelial cells embedding vessels that leads to the leak
of small plasma molecules.
Endotoxin tolerance
A state induced mainly in monocytes/macrophages by endotoxin
or by exogenous or endogenous inflammatory stimuli. Cells
become refractory to secondary challenge with endotoxin or other
inflammatory stimuli. The phenomenon is regulated at multiple
levels (epigenic, miRNA, negative signaling, cross-talk with
immunosuppressive cells. . .).
Endotype
A subtype of a clinical syndrome that shares common
pathophysiological mechanisms.
Hibernation
A metabolic-bioenergetic shutdown allowing the organs to retain
the capacity to recover after the insult has passed.
Immunosenescence
A natural decline of the immune system functions with aging.
Microbiome
A collection of microorganisms that can be found in or on
multicellular organism in the context of anatomical location (gut
microbiome, skin microbiome, lung microbiome).
Neutrophil Extracellular Traps (NETs)
DNA structures actively released during programmed death of
neutrophils, which primary aim to entrap and kill the pathogens.

A dysregulated production of NETs can be detrimental to the host and
induce pathologies.
Pathobiome
A disease-related changed in microbiome.
Persistent inflammation, immunosuppression, and catabolism
syndrome (PICS)
A phenotype underlying the chronic critical illness, initiated early
in the course of disease. This is perpetuated by the release of
damage-associated molecular patterns (DAMPs) associated with
signs of immunosuppression and altered metabolism.
Reprogramming
The modified responsiveness of innate immune cells in response to
a second stimulus. Depending on the nature of the first challenge,
it can be similar to endotoxin tolerance or to priming (also
referred to as innate immune memory).
Sepsis
A life-threatening organ dysfunction caused by a dysregulated
host response to infection.
Septic shock
A subset of sepsis in which particularly profound circulatory,
cellular, and metabolic abnormalities are associated with a greater
risk of mortality than with sepsis alone.
Sequential Organ Failure Assessment Score (SOFA)
A simple tool to assess the degree of organ dysfunction, to track
disease progression, and to predict outcome; it comprises six
categories covering abnormalities in respiratory, cardiovascular,
hepatic, coagulation, renal, and neurological systems.
Sick euthyroid syndrome
A condition in which low levels of thyroid hormones are found in
patients with non-thyroid illness.
Theranostics
An individualized medicine approach combining targeted
therapeutics and diagnostic test
Translational research
Preclinical research aiming at understanding the physiopathology
and the molecular mechanisms of a human disease or at proposing
new therapeutic approaches to improve health outcome.
Laboratory animals are often used to mimic human diseases.
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2018), pro-resolving mediators such as resolvin D2 (Spite et al, 2009),

and the cell surface nucleotide-metabolizing enzyme CD39 (Csóka

et al, 2015). Acetylcholine produced by neurons and by a specific

subset of T-lymphocytes in response to norepinephrine is considered

a significant component in the neuronal control of inflammation

(Rosas-Ballina et al, 2011), though the role of the vagus nerve in

neuro-immune cross-talk is controversial (Martelli et al, 2014; Pavlov

et al, 2018). In a case report of successful use of experimental elec-

troacupuncture to protect against sepsis, dopamine was shown to be

the primary beneficial mediator (Torres-Rosas et al, 2014).

Circulating cells
Sepsis is associated with the reprogramming of circulating leukocytes

(Cavaillon et al, 2005). The term “immunosuppression” is widely

used to qualify this phenomenon, which is inappropriate and mislead-

ing (Cavaillon & Giamarellos-Bourboulis, 2019). The ex vivo behavior

of leukocytes is greatly influenced by the compartment they are

derived from (Rasid & Cavaillon, 2018; Fig 3). Blood leukocytes

display reduced capacities to proliferate and to produce cytokines and

antibodies. Monocytes show reduced expression of HLA-DR mRNA,

while neutrophils show an increased expression of CD64 mRNA.

Notably, recruited monocytes within the lungs express 3.5-fold more

membrane HLA-DR compared to circulating monocytes (Skirecki

et al, 2016). Lymphocytes exhibit enhanced spontaneous apoptosis

while neutrophils’ anti-CD24-induced apoptosis is reduced (Parlato

et al, 2014). These alterations occur rapidly and in proportion to the

intensity of the insult, be it sepsis or other critical illnesses such as

trauma, hemorrhagic shock, major surgery, resuscitation after cardiac

arrest, and pancreatitis (Kim et al, 2010; Timmermans et al, 2016).

As expected, the altered capacity of circulating monocytes is associ-

ated with an enhanced expression of inhibitory signaling molecules

(Escoll et al, 2003; Adib-Conquy et al, 2006), histone modifications

(Bomsztyk et al, 2015), and specific miRNAs (Zhou et al, 2015;

Reithmair et al, 2017). Some miRNAs can attenuate sepsis-associated

alterations in myeloid cells, endothelial cells, and in the myocardium

(Zhou et al, 2017; Sisti et al, 2018). Circulating extracellular vesicles

containing miRNAs may be a novel mechanism of intercellular

communication during sepsis (Real et al, 2018). Whether these
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Figure 1. Summary of sepsis pathophysiology.

Upon direct activation of immune and endothelial cells by the pathogen-associatedmolecular patterns, there is a massive release of inflammatorymediators which affect each
body system. Inflammatory response activates the central nervous system, which acts by cholinergic anti-inflammatory impulsion and altered neuroendocrine response to
control the body response to infection and increase chances of survival. Cardiovascular dysfunction plays a central role in the pathogenesis of sepsis with the major role of
vasoplegia, hypovolemia,microcirculation perturbations, and cardiomyopathy. Altered endotheliumand inflammatory cells lead to the development of acute respiratory distress
syndrome (ARDS). The direct action of cytokines and toxins, together with decreased blood flow, leads to acute kidney injury (AKI). Inflammatory response and ischemia alter gut
permeability which enables entry of bacteria and their metabolites into the tissues. Both bacterial products and inflammatory mediators affect bone marrow progenitor cells
enhancing the emergencymyelopoiesis. Most often, the failure ofmultiple organs is present, which has significant consequences as there is a cross-talk between injured organs
which further perpetuates their dysfunction. For a more detailed perspective on organ failure in sepsis, we refer to a recent review (Lelubre & Vincent, 2018).
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extracellular vesicles have an inhibitory role via delivery of miRNAs

or display a pro-inflammatory potential via their capacity to activate

monocytes (Danesh et al, 2018) remains to be elucidated.

In addition to their role in blood clotting, platelets play an impor-

tant role in multiple biological functions. This diversity relates to

their capacity to sense and respond to infectious agents and to

release significant amounts of inflammatory mediators (Garraud

et al, 2013). Platelets can bind to numerous circulating leukocytes,

particularly neutrophils (Gawaz et al, 1995), favoring the formation

of neutrophil extracellular traps (Clark & Coopersmith, 2007),

neutrophil recruitment LPS-induced lung injury (Grommes et al,

2012), and neutrophil rolling onto the endothelium and margination

outside venules (Sreeramkumar et al, 2014). Thrombocytopenia is a

hallmark of sepsis and may relate to decreased production and/or

increased destruction. In a recent study, 38% of sepsis patients had

low or very low platelet counts; such patients had a higher clinical

illness severity score and an increased mortality (Claushuis et al,

2016). Of note, levels of circulating RANTES (CCL5), a chemokine

mainly derived from platelets, were lower in the most severely ill

patients with poor outcomes (Cavaillon et al, 2003).

It should be stressed that for most molecular and cellular players,

conflicting contributions have been revealed. While platelets contri-

bute to inflammation, they have also been shown to decrease organ

damage in LPS-treated mice (Xiang et al, 2013) through a C-type-

lectin-like-2 (CLEC-2)-dependent process (Rayes et al, 2017).

Endothelium
The pivotal role of endothelial cells in the pathogenesis of sepsis is well

recognized. Most endothelium physiological functions are disturbed,

leading to increased vascular permeability, activation of coagulation,

and participation in the inflammatory response (Opal & van der Poll,

2015). Some recently reported aspects of endothelial injury in sepsis

may also contribute significantly to mortality (Johansen et al, 2015).

The role in sepsis of the angiotensin-1,-2/Tie2 pathway, an important

regulatory axis of the endothelium, was recently reviewed (Leligdow-

icz et al, 2018). High levels of angiopoietin-2 in pneumonia patients

contributed to endothelial permeability and were related to poor

outcomes, while angiopoietin-1 was shown to ameliorate vascular leak

(Gutbier et al, 2018). Mechanistically, a reduction of the histone

deacetylase, sirtuin 3, leads to the increase in angiopoietin-2 and fall in

• Genetic diversity
• Gender
• Age
• Underlying disease
• Microbiota
• Ethnic group
• Smoking | Alcohol
• Viral reactivation

EPIGENETIC
MODIFICATION

Immune cell
reprogramming

Modulation
of metabolism

HYPERGLYCEMIA
LIPOLYSIS

PROTEIN CATABOLISM

Barriers
dysfunction

Apoptosis of endothelial
and epithelial cells

Platelet activation

Activation of complement system

• Neuronal control
• Proresolving
 mediators
• Anti-inflammatory
 cytokines
• Cytokine inhibitors
 and antagonists
• miRNA

Activation of coagulation

PATHOGENS

DAMPs

e.g. HMGB

PAMPs

e.g. LPS

Cytokine
storm

©
 E

M
B

O

Figure 2. Summary of the players and pathophysiological events occurring and influencing sepsis.

Complex interactions between genetic and chronic health status determine the host response to pathogens. The magnitude and variety of humoral and cellular response
may lead to organ dysfunctions, which are a key denominator of sepsis in comparison with other forms of infection.
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angiotensin-1. These changes also contribute to the loss of pericytes

(Zeng et al, 2016). Furthermore, the Tie-2 receptor is downregulated in

sepsis at both transcriptional and protein levels (Thamm et al, 2018).

Another mediator in sepsis-induced endothelial dysfunction is

microRNA-155, which promotes bioenergetic deterioration, contractile

dysfunction, pro-inflammatory activation, and downregulation of the

angiotensin type 1 receptor (Vasques-Novoa et al, 2018). A novel

insight into the mechanism of endothelial cell death in sepsis described

an intracellular endotoxin-sensing machinery in the induction of

endothelial cell pyroptosis (Cheng et al, 2017).

Epithelium
Maintenance of the gut barrier can be severely impaired in sepsis by

enterocyte loss from apoptosis and pyroptosis (Mandal et al, 2018),

and a rapid decline of tight junctions following reduced expression

of claudins and occludin (Yoseph et al, 2016). The observations of

enterocyte injury and increased gut wall permeability led to the

concept of the “leaky gut” as the motor of multi-organ dysfunction

in critical illness, acting as a source of bacteria and bacterial toxins

(Carrico et al, 1986). Although this hypothesis has not gained suffi-

cient traction in clinical studies, and patients do not seem to die

from bacteremia (Savage et al, 2016), updated and modified insights

offer attractive new pathophysiological concepts, in particular the

protective role of the microbiome (Alverdy & Krezalek, 2017; Meng

et al, 2017) and its modulation by probiotics (Angurana et al,

2018). However, dissemination of intestinal bacteria does not seem

to be an essential event as gut-derived DAMPs can travel through

the lymph and cause distant organ injury (Reino et al, 2011).

Endocrinopathy
The central nervous system is stimulated during sepsis by efferent

impulsion, inflammatory cytokines, and PAMPs that can enter the

blood-brain barrier at specific locations (Annane, 2016). These

signals modify the central endocrine axes that orchestrate metabolic

and immune responses, and these change over time. For a detailed

description of endocrine alterations in sepsis, we recommend a

recent review by Ingels et al (2018). Briefly, early endocrine

responses to a critical insult are generally protective. However, the

degree of activation of the hypothalamic–pituitary–adrenal (HPA)

axis represents a significant stress response that correlates with poor

outcomes (Vassiliadi et al, 2014). Release of adrenocorticotropic

hormone is increased, while the high serum concentration of corti-

sol is also due to impaired clearance (Annane, 2016). The poten-

tially advantageous effects of early high cortisol production are

counteracted by peripheral glucocorticoid resistance mediated by

pro-inflammatory cytokines. However, a subgroup of patients could

not mount an efficient cortisol response due to inhibition of the

HPA axis and would potentially benefit from glucocorticoid supple-

mentation (Annane, 2016).

Plasma catecholamine levels are also elevated, more so in even-

tual non-survivors (Boldt et al, 1995), with multiple negative conse-

quences including impaired myocardial function, inhibition of both

innate and adaptive immunity yet enhanced pathogen virulence and

growth, pro-coagulopathic effects, altered gut motility, lipolysis, and

insulin resistance (Andreis & Singer, 2016).

Sepsis also affects thyroid function by an early increase in thyro-

tropin (TSH) production but a reduction in both thyroxine and the

more active triiodothyronine (Peeters et al, 2006). This condition,

often called the sick euthyroid syndrome or the low T3 syndrome,

also correlates with a poor outcome (Angelousi et al, 2011). A trial

of thyroxine treatment in critically ill patients however resulted in

higher mortality (Acker et al, 2000).

Another pituitary hormone, growth hormone (GH), is initially

upregulated in septic patients and correlates with disease severity

(Schuetz et al, 2009). However, its downstream effectors are

decreased in the serum (Baxter et al, 1998). High levels of GH stim-

ulate lipolysis and antagonize insulin. Yet, two multi-centre studies

of growth hormone treatment in critically ill patients showed a

doubling in mortality rates (Takala et al, 1999).

Apart from disturbances in the central hormonal axes, there is a

growing interest in the role of intestine-released hormones and

fat-derived adipokines in the pathogenesis of sepsis. However, it

remains unclear whether altered levels of these hormones and

adipokines contribute to pathology, or are simply epiphenomenal and

reflective of dysregulated homeostasis. Examples include insulin, the

incretins (GLP-1 and GIP), ghrelin, and leptin. High and persisting

levels of glucagon-like peptide-1 in septic patients are associated with

an increase in mortality and functional disability (Brakenridge et al,

2019). Ghrelin, involved in appetite stimulation, increases in the

plasma of septic patients (Nikitopoulou et al, 2019), and active ghrelin

levels are inversely correlated with the SOFA organ dysfunction score

and length of ICU stay. In short-term preclinical models of sepsis,

ghrelin has been shown to decrease pro-inflammatory cytokine levels,

stimulate proliferation of T cells, and attenuate the decrease in serum

levels of IGF-1 (Faim et al, 2019); however, we found that ghrelin

infusion in a long-term rodent fecal peritonitis model had no impact

on outcomes (Hill et al, 2017). Plasma insulin levels are variably
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reported as raised or depressed in sepsis, but insulin resistance is

commonplace regardless, with subsequent hyperglycemia-inducing

toxicity. The optimal degree of glycemic control nonetheless remains

controversial (Gunst et al, 2019). Peripheral resistance indicates

abnormalities at, or distal to, the insulin receptor (Van Bogaert et al,

2011). Similar issues are likely to exist for other hormonal pathways,

such as glucocorticoids and growth hormone.

Metabolism
The importance of alterations in metabolism during sepsis is well

recognized and is part of the current definition of septic shock

(Singer et al, 2016). With peripheral insulin resistance and

increased lipolysis and proteolysis, there is a general shift toward

fat and protein utilization. This in turn impacts upon immune

functionality (Balmer & Hess, 2017) and metabolic efficiency.

However, many questions remain unanswered (Van Wyngene

et al, 2018). Many clinical and preclinical data indicate sepsis-

induced mitochondrial dysfunction in multiple tissues (Brealey

et al, 2002; Singer, 2014) with a shift toward anaerobic (glycolytic)

metabolism. While anaerobic metabolism can boost the antimicro-

bial capacities of immune cells, it may also contribute to their loss

of function (Balmer & Hess, 2017). In the course of sepsis, mono-

cytes develop broad defects in both glycolysis and oxidative phos-

phorylation that are related to the phenomenon of endotoxin

tolerance and which can be restored by interferon-gamma (IFNc)
treatment (Cheng et al, 2016). A recent genome-wide array study

(Davenport et al, 2016) proposed two signatures of gene expres-

sion patterns, with one related to higher mortality and features of

immunosuppression. This subgroup showed upregulated expres-

sion of hypoxia-inducible factor 1 alpha (HIF1a), HIF2a, and

lactate dehydrogenase A, but downregulation of the mechanistic

target of rapamycin (mTOR).

As failed organs show minimal to no evidence of cell death, a

global metabolic shutdown is postulated as the primary mechanism

of organ dysfunction in sepsis (Singer, 2014). This state, akin to

hibernation, may even represent an adaptive mechanism, allowing

restoration of organ function once the inflammatory process

resolves (Singer et al, 2004; Stanzani et al, 2020). Notably, sepsis

non-survivors are characterized by subnormal levels of muscle ATP

(Brealey et al, 2002), while maintenance of hepatic gluconeogenesis

was shown to be crucial in establishing disease tolerance (Weis

et al, 2017). These data suggest that adaptive pathways can spill

over into maladaptation if sufficiently dysregulated.

Impaired bioenergetics under septic conditions have also been

shown to affect energy-consuming functions in multiple types of

epithelial cells. For example, pneumocytes downregulate the Na+,

K+-ATPase pump, which is responsible for fluid clearance in alveoli

(Vadasz et al, 2008), while renal tubular epithelial cells decrease

sodium channel expression (Gomez et al, 2015). Controlled autop-

hagy may be an important process required for epithelial cell

survival under septic conditions (Oami et al, 2018).

Microbiome/Pathobiome
A growing body of evidence demonstrates that gut microbiota inter-

acts with the gut epithelium and the host’s immune system. The

microbiome and its metabolites are essential regulators of health

under steady-state conditions. A severe insult such as infection or

trauma rapidly induces profound changes in the intestinal

ecosystem (dysbiosis), leading to loss of diversity of the physiologi-

cal, mostly anaerobic flora (Ojima et al, 2016), unification of the

microbiome composition at different sites (Rogers et al, 2016), and

outgrowth of pathological species that are often nosocomial

(Alverdy & Krezalek, 2017). The microbiome is compromised

further by concurrent use of broad-spectrum antibiotics, even with

only a few doses (Iapichino et al, 2008; Ferrer et al, 2017).

The gut is not the only site harboring microbiota. For exam-

ple, the skin and lung are also colonized with their respective

microbiome, but their biology is less well understood (Gilbert

et al, 2018). Recently, both intestine and upper airways micro-

biota were shown to regulate lung immunity (Brown et al,

2017). While the role of the microbiome in other tissues such as

the kidney remains to be specified in the pathophysiology of

sepsis, the skin microbiome has recently been shown to favor

the pathogenicity of certain bacteria such as Staphylococcus

aureus (Boldock et al, 2018).

Notwithstanding iatrogenic administration of antibiotics and

gastric acid suppressants, the host’s overall changes during critical

illness promote the emergence of the pathobiome (disease-related

flora; Zaborin et al, 2014; Gilbert et al, 2016). This includes supra-

normal levels of catecholamines that induce pathogen growth, viru-

lence, and biofilm formation, as well as directly impacting on the

microbiome (Dickson et al, 2015; Sarkodie et al, 2019).

Numerous studies suggest that the relationship between the

host and microbiome/pathobiome is bidirectional (Kelly et al,

2015; Sarkodie et al, 2019). Of note, gut-specific bacteria can

dominate the lung microbiome in septic patients, and this change

correlates with alveolar TNF expression (Dickson et al, 2016).

Preserving the physiological gut microbiome could protect the

host from pneumonia (Schuijt et al, 2016), sepsis (Wilmore et al,

2018), or melioidosis (Lankelma et al, 2017) by maintaining the

gut barrier (Fox et al, 2012), enhancing immunity, and protecting

the brain (Li et al, 2018). Clinical data have indirectly shown the

impact of the disturbed microbiome on susceptibility to sepsis

(Prescott et al, 2015a; Baggs et al, 2018). Colonization with Ente-

rococci at ICU admission was related to a higher risk of subse-

quent infection and mortality (Freedberg et al, 2018). The

abovementioned findings shine a new light on the gut and the

microbiome/pathobiome as significant players in the pathophysiol-

ogy of sepsis. The development and decreasing cost of metage-

nomics and metabolomics will likely move this field rapidly.

Recent murine trials showed the potential of modulating the

microbiome with a high fiber diet (Morowitz et al, 2017), while

the first successful fecal microbiota transplantation used as a

salvage therapy in critically ill ICU patients has also been reported

(Wei et al, 2016).

Short- and long-term consequences of surviving sepsis

Surviving sepsis creates a plethora of new healthcare challenges. Up

to 40% of patients who survive the early phase of sepsis develop

chronic critical illness, a state defined as a prolonged (> 14 days)

ICU stay with sustained organ dysfunction (Stortz et al, 2018).

Many of these patients do not leave hospital alive or are not fit

enough to return to their own homes. In the longer term, there is a

higher mortality risk, poorer health status, and an increased
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requirement for more medical interventions and rehospitalizations

(DeMerle et al, 2017). This so-called post-intensive care syndrome

reflects new onset (or worsening of preexisting) neurocognitive

deterioration, psychiatric complications, and/or physical impair-

ments (Needham et al, 2012).

Neuropathy
Acute brain dysfunction is a frequent and severe early sign of sepsis

present in about 50% of cases admitted to the ICU (Sonneville et al,

2017). It can manifest as confusion, delirium, drowsiness, coma,

seizures, or with focal neurological signs. Sepsis-associated

encephalopathy (SAE) includes not only early brain dysfunction but

also the longer-term impairments seen in sepsis survivors. Brain

lesions can be found in approximately a third of patients with clini-

cally diagnosed SAE (Orhun et al, 2018). Two distinct patterns of

neuroaxonal injury—ischemic and diffuse—were identified using

magnetic resonance imaging and immunohistopathologic analysis of

post-mortem brains (Ehler et al, 2017). The pathophysiology of SAE

is incompletely understood, but is driven by systemic inflammation,

which leads to disruption of the blood–brain barrier and ingress of

bacterial toxins, pro-inflammatory monocytes, and neutrophils into

the brain tissue (Kuperberg & Wadgaonkar, 2017; Tauber et al,

2017). Early infiltration of NK cells enhances monocyte recruitment

(He et al, 2016). Pro-inflammatory cytokines and toxins activate

microglia and astrocytes (Hasegawa-Ishii et al, 2016), and fueling

local inflammation (Zrzavy et al, 2018). Together with afferent

impulsion, the inflamed microenvironment induces neuronal

changes. At the functional level, SAE is related to decreased brain

oxygenation (Wood et al, 2016), metabolic shifts (Hara et al, 2015),

and excitotoxicity (Mazeraud et al, 2016). The aforementioned

mechanisms may be sustained in sepsis survivors with long-term

consequences such as cognitive and functional impairment (Annane

& Sharshar, 2015), depression (Davydow et al, 2013), stress disor-

ders (Wintermann et al, 2015), and neurological complications

(Reznik et al, 2017). Recent animal studies support the causative

link between sepsis and long-term psychological dysfunction

(Barichello et al, 2019). Other improvements of cognitive impair-

ment after sepsis have been achieved with some of the treatments

known to protect mice against sepsis-induced death, such as anti-

HMGB-1 antibodies (Chavan et al, 2012; Gentile & Moldawer, 2014;

Stevens et al, 2017) or electroacupuncture (Han et al, 2018). Periph-

eral nerves can also be affected by sepsis inducing a critical illness

polyneuropathy. Loss of axonal fibers affecting motor and/or

sensory nerves can be observed in skin biopsies, with impairment

of signal conduction (Hermans & Van den Berghe, 2015; Axer et al,

2016).

Myopathy
Similar mechanisms to neuropathy can also induce sepsis-related

myopathy. Either one and/or both conditions (collectively known as

ICU-acquired weakness) can worsen the patient’s outcome, lead to

prolonged mechanical ventilation (Sharshar et al, 2009), and carry

long-term consequences (Hermans & Van den Berghe, 2015). Sepsis-

related myopathy is characterized by the loss of muscle mass, a fall

in force-generating capacity, and altered bioenergetics (Hermans &

Van den Berghe, 2015). Critically ill patients face multiple risk

factors causing myopathies such as immobilization, local inflamma-

tion-induced by systemic mediators, and nutritional defects

(Friedrich et al, 2015). Mechanisms responsible for septic myopathy

include sodium channel dysfunction with upregulation of non-selec-

tive channels (Balboa et al, 2018), ubiquitin–proteasome pathway

protein proteolysis, proteasome activation and increased autophagy

(Wollersheim et al, 2014; Preau et al, 2019), changes in intracellular

calcium levels leading to excitation-contraction uncoupling (Batt

et al, 2013), and mitochondrial derangements with an increase in

free radical generation (Zolfaghari et al, 2015). Although autophagy

is among the mechanisms of protein loss, its balanced activation

can protect muscles from the accumulation of toxic proteins (Morel

et al, 2017). Through activation of the TNF and mTORC1 pathways,

sepsis impairs the physiological anabolic response of muscles to

contraction, thereby slowing down recovery from atrophy (Steiner &

Lang, 2015). Recovery from sepsis is related to increased muscle

protein synthesis and decreased autophagy, but in juxtaposition,

proteasome activity is upregulated, possibly hindering myosin

restoration (Crowell et al, 2017). Interestingly, the satellite cells,

which serve as muscle progenitor cells, are severely impaired by

sepsis and are not able to regenerate injured muscle (Rocheteau

et al, 2015) due to upregulated oxidative phosphorylation and loss

of mitochondrial mass. In consequence, these alterations lead to the

loss of satellite cells.

The incidence of ICU-acquired weakness negatively affects the

quality of life of survivors (Hermans & Van den Berghe, 2015), and

recovery from ICU-acquired weakness can take up to one year after

discharge, or even be permanent, especially with neuropathy.

Altered immunity
Sepsis survivors are at higher risk of recurrent infection, and this is

a major reason for re-hospitalization (Prescott et al, 2015b).

Whether recurrent infections contribute substantially to long-term

mortality is unclear, but they worsen quality of life and constitute

an additional risk to survivors (Shankar-Hari et al, 2016). Suscepti-

bility to infection suggests sustained immune impairments in sepsis

survivors, which are only now being identified. Currently recog-

nized mechanisms of long-term immune impairment include expan-

sion of myeloid-derived suppressor cells (Mathias et al, 2017), a

high proportion of regulatory T cells (Cavassani et al, 2010),

disturbed T-cell recovery (Condotta et al, 2013), and multiple epige-

netic modifications within various cell types (Hassan et al, 2018). A

recent study also revealed persistently increased inflammatory

mediators such as HMGB1, TNF, IL-7, and resolvins, even at 1 year

after hospital discharge (Riche et al, 2018).

These alterations in immune status do not necessarily reflect a

global defect (Rubio et al, 2019). For example, sepsis could improve

tumor-specific CD8+ T-cell responses (Danahy et al, 2019). TCR-

dependent T-cell function is somewhat augmented, pointing against

a paradigm of generalized immunosuppression in sepsis survivors

(Borken et al, 2017). However, there is an incomplete recovery of

the TCR reservoir after sepsis, and this process is in part dependent

on the gut microbiome (Cabrera-Perez et al, 2016). Importantly,

these changes are accompanied by a smoldering low-grade

inflammation that induces a catabolic shift and may perpetuate

disturbed myelopoiesis (Horiguchi et al, 2018). This phenotype has

been coined “persistent inflammation, immunosuppression, and

catabolism syndrome” (PICS) and can be viewed as a mechanism

underlying chronic critical illness (Gentile et al, 2012; Horiguchi

et al, 2018; Fig 4).
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What went wrong? Explaining 30 years of failure of
translational research

Inappropriate animal models
For the last thirty years, using genetically engineered mice or

animals treated with antibodies or drugs that target a given mole-

cule, investigators have successfully demonstrated a deleterious

contribution from a large number of molecular players and path-

ways during sepsis, and beneficial consequences following their

neutralization. However, none have resulted in positive clinical

trials. This may relate to the limited predictive value of preclinical

models of disease (Plenge et al, 2013).

It is indeed essential to acknowledge significant differences that

exist between mice and humans (Fig 5, Table 1), not only in terms

of physiology but also with regard to the response to a septic insult.

For instance, as opposed to humans, mice develop bradypnea rather

than tachypnea, and bradycardia rather than tachycardia (Iskander

et al, 2013; Hoover et al, 2015). When maintained at room tempera-

ture, septic mice are under cold temperature stress (Karp, 2012) and

usually display hypothermia in line with illness severity (Zolfaghari

et al, 2013). If their temperature is kept close to thermoneutrality,

mice can generate a fever, and their ability to manage sepsis signifi-

cantly improves (Jiang et al, 2000). The different circadian rhythm

between mice and humans also impacts upon the immune response

and the timing of expression of key regulators such as HIF1a (Zhao

et al, 2017). While the gut is postulated to be the “motor” of multi-

ple organ failure (MOF), allowing systemic ingress of gut bacteria

and their cellular constituents (Klingensmith & Coopersmith, 2016),

the surface pathophysiology involving the intestine may be different

between species. Indeed, the surface ratio of the small intestine to

the colon is 22-fold lower in mice than humans (Nguyen et al,

2015). The immune system also differs in many ways (Mestas &

Hughes, 2004), and the main acute phase proteins produced in

sepsis vary between species. Human and murine neutrophils also

display numerous differences (Table 1); most striking is the dif-

ferent effect of sepsis on NETosis, which is reduced in humans

(Hashiba et al, 2015) but enhanced in mice (Meng et al, 2012). With

respect to platelets, not only do number and size differ between

humans and mice, but also their mRNA content (Schmitt et al,

2001; Rowley et al, 2012).

A well-recognized difference between rodents and humans is the

very high resistance of rodents to endotoxin and their greater resili-

ence to infection (Warren et al, 2010) or sterile insults (Gentile et al,

2013). Genes encoding proteins that sense PAMPs and DAMPs, and

coding for cytokines and chemokines are not strictly identical

(Table 1). The transcriptomic expression of cells within human and

murine blood following different severe inflammatory insults poorly

correlates (Seok et al, 2013), even if an independent re-analysis of

the same dataset yields completely different results (Takao &

Miyakawa, 2015).

Another thorny aspect of animal experimentation is that the

experimental model of infection strongly influences the host

response. Thus, findings from one model may not necessarily be

generalizable. For example, the metabolomic signature differed in

rats undergoing cecal ligation and puncture (CLP) compared to

those receiving an intra-peritoneal injection of S. aureus (Lin et al,

2016). Similarly, in two models of intra-abdominal sepsis (CLP

versus administration of a cecal slurry) with similar mortality, addi-

tion of tissue ischemia/infarction (cecal ligation) to an infectious

process significantly modified the host transcriptomic response

(Gentile et al, 2014).

Finally in most animal models, the treatment is administered

before, concurrent, or soon after the initiation of the infectious

insult. By contrast, patients usually develop sepsis over days; often

by the time of presentation, organ dysfunction is already well

established.

Inappropriate selection of patients
Agglomerating different types of severe infection under the

“sepsis” umbrella has resulted in enrollment of a heterogeneous

population of patients into clinical trials. In addition to intrinsic

individual heterogeneity reflecting genetic and epigenetic diversity

(Fig 2), specific patient characteristics such as underlying comor-

bidities, obesity, medications, reactivation of asymptomatic viral

infections, age, and sex can all modify the overall host response to

pathogens, and thus patient outcomes. Individual heterogeneity is

impossible to avoid, though selecting patients according to the

type of infection would be more feasible. Mechanisms underlying

the host response are greatly influenced by the location of the

infectious insult. This reflects the fact that immune cells reside

within varied molecular and cellular microenvironments in dif-

ferent tissues and, as a consequence, display specific behavior. For

example, murine intestinal macrophages are unresponsive to
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Figure 4. Long-term sequel of sepsis.

Most of the sepsis cases occur in patientswith chronic comorbidities.Within days
to weeks, some patients can be healed while some will succumb due to acute
organdysfunctions.However, ahigh frequencyofpatientsdevelopchronic critical
illness (ICU stay for more than 14 days). This condition is caused mechanistically
by the persistent inflammation, immunosuppression, and catabolism syndrome
(PICS). During this phase, some patients die due to organ dysfunctions, and some
develop secondary infections. A group of chronic critical illness patients still can
fully recover. However,most of the patientswill experience theworsening of their
chronic conditions and suffer from the onset of new ones.
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conventional stimuli (Smythies et al, 2005); peritoneal macro-

phages, alveolar macrophages, and blood monocytes are stimu-

lated differently by Staphylococcus aureus (Kapetanovic et al,

2011); spleen, lung, peritoneal macrophages, and microglial cells

express different patterns of transcriptomic and cell surface expres-

sion (Gautier et al, 2012); and alveolar macrophages fail to

develop endotoxin tolerance (Philippart et al, 2012). This late

phenomenon has also been observed with human alveolar macro-

phages (Smith et al, 1994). Studies in septic patients confirm how

different sites of infection affect the systemic response (Gogos

et al, 2010; Hoser et al, 2012). Thus, not surprisingly, specific

pathophysiological mechanisms differ between compartments, and

therapeutic intervention should be adapted accordingly with

patient cohorts more homogenous in terms of the infection site.
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Figure 5. Some keys differences in murine and human physiology that affect the response to sepsis (CRP—C-reactive protein, MAC—membrane attack
complex, SAP—serum amyloid protein).
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Another cause of heterogeneity is the nature of the infectious

agent. The PAMPs and toxins released by Gram-positive and

Gram-negative bacteria are not identical. Most superantigens are

derived from Gram-positive bacteria and induce an unique cyto-

kine profile, including lymphotoxin-a derived from T-lymphocytes

(Müller-Alouf et al, 1994). This can be observed particularly in

patients with Streptococcal toxic-shock syndrome (Sriskandan et al,

1996). Endotoxins from Gram-negative bacteria are highly potent

PAMPs inducing the greatest number of gene activations (Schmitz

et al, 2004). Notably, endotoxin can also be present in patients

with Gram-positive infection due to gut translocation (Opal et al,

1999). A strong synergy has been regularly reported between

Gram-positive superantigens and endotoxin or other Toll-like

receptor agonists (Cavaillon, 2018). CD137, a member of the TNF

receptor superfamily, is expressed on neutrophils and shown to be

protective during Gram-positive and deleterious during Gram-nega-

tive infections (Nguyen et al, 2013).

Improving the chances of therapeutic success

Faster and more reliable diagnosis
Significant delays in initiating treatment will impact upon patient

outcomes. Highly specific, sensitive, and rapid tests are urgently

needed to avoid unnecessary, inappropriate, or ineffective use of

antibiotics. Although many host biomarkers have been reported

(Parlato & Cavaillon, 2015), none of them (alone or in combination)

displays sufficiently high levels of specificity and sensitivity (Parlato

et al, 2018). However, various novel approaches show promise in

distinguishing sepsis from sterile inflammation using transcrip-

tomics (Sweeney et al, 2018a), metabolomics (Mickiewicz et al,

2015), or microfluidics (Hassan et al, 2017; Ellett et al, 2018).

Combined analysis of leukocyte biomarkers has also been investi-

gated. Finally, proteomics and transcriptomics have also been

proposed to allow discrimination between bacterial and viral infec-

tion (Oved et al, 2015; Miller et al, 2018).

As therapeutic approaches could differ depending on illness

severity, signatures stratifying patients according to their risk of

death could be of interest. Transcriptomic (Sweeney et al, 2018a,

2018b) and cell surface marker (Conway Morris et al, 2018) signa-

tures have already been described. More desirably, patients could

be identified based on the likelihood of response to a particular

treatment. For example, very high serum levels of ferritin could be

used as a marker of hemophagocytic lymphohistiocytosis, for which

specific treatments such as an IL-1 receptor antagonist (anakinra)

may be suited (Lachmann et al, 2018).

Rapid identification of the infectious agent and of its antibiotic

sensitivity is also of primary importance. While PCR assays offer

good sensitivity and specificity (Salimnia et al, 2016), they require

time-consuming blood cultures, and direct identification of bacterial

DNA within freshly isolated blood samples is still associated with

too many false-positive and false-negative results (Fitting et al,

2012; Dark et al, 2015). A test combining culture-independent PCR/

electrospray ionization-mass spectrometry technology was launched

commercially but, alas, withdrawn as the cost was too prohibitive.

However, it displayed 81% sensitivity, 69% specificity, and 97%

negative predictive value at 6 hours from sample acquisition (Vin-

cent et al, 2015). Post hoc analysis of this cohort revealed a higher

mortality in patients with molecular test-positive, culture-negative

samples (O’Dwyer et al, 2017).

Improving translational research
Refinement, reduction, and replacement of animal models should be

strongly encouraged. In vitro or ex vivo studies can be performed

directly on human cells and tissues, and these may be comple-

mented by more sophisticated and robust human organoid and

organ-on-chip models. Experiments using rodent models remain

useful and informative; however, their limitations should be humbly

recognized. Improvements have been proposed (Osuchowski et al,

2018), such as the use of antibiotics, fluids, and clinical isolates

instead of laboratory bacterial strains, which may fail to mimic

real-life pathogenesis due to their reduced capacity to make biofilms

(Fux et al, 2005). The role of wild-type microbial flora in influencing

outcome has only recently been appreciated (Velazquez et al,

2019). The wild-type microbiome acquired by co-housing specific

pathogen-free mice with their pet-shop mates allowed the mice to

develop a mature immunity capable of generating responses more

similar to those of humans (Beura et al, 2016). Colonizing experi-

mental mice with a human patient-derived pathobiome that emerges

in critical illness would further allow to better mimic pivotal host–

pathobiome interactions (Alverdy & Krezalek, 2017). An appropriate

choice of infection model (pneumonia, CLP, or soft tissue infection)

Table 1. Some physiologic and immunologic differences between
mice and humans that may affect the host response to infection, the
development of sepsis, and its monitoring.

Mice Humans

Physiology

Circadian rhythm Nocturnal Diurnal

Nutrition Standardized
chow diet

Varied

Glucose levels ↓ after sepsis ↑ after sepsis

Temperature ↓ after sepsis ↑ after sepsis

Metabolic rate ↓ after sepsis ↑ with initial sepsis,
normalizes with increasing
severity

Immune system

Predominant white
blood cell type

Lymphocyte Neutrophil

Enzymatic content in
neutrophils

Low High

a-defensin production
by neutrophils

No Yes

Expression of CXCR1 on
neutrophils

No Yes

NETosis after sepsis Increased Decreased

Missing genes IL-8, IL-32,
IL-37, LFA-3

TLR11, TLR12

TLR10,
Caspase 10

MCP-5

Main inflammasome
player in LPS sensing

Caspase 11 Caspase 4 and 5
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with a relevant infection route and pathogen load would also better

reflect a given human sepsis type.

Stratification of septic animals according to their predicted proba-

bility of survival may help discriminate the effectiveness of novel

treatments (Osuchowski et al, 2009). Telemetry techniques reveal a

variable physiological response of mice subjected to a similar septic

insult (Lewis et al, 2016); this could be utilized to select only signifi-

cantly affected individuals for enrollment into a treatment study, to

increase homogeneity and improve assessment of the treatment

effects. More “real-life” conditions could be achieved, for instance

by the use of aged animals or animals with comorbidities. Two-hit

models, where an initial trauma or infectious episode is followed by

induction of a secondary infection, resemble a frequent clinical

scenario, and may recapitulate the human host responses better

than single hit models (Muenzer et al, 2006). Finally, specific

aspects of the human immune response could be examined within

humanized mice models with added genetic variability from trans-

plantation of stem cells originating from different donors (Skirecki

et al, 2015; Prince et al, 2017).

Non-rodent models such as rabbits and pigs have some advan-

tages, for example, greater sensitivity to bacterial infection and

responses resembling better those observed in humans (Fairbairn

et al, 2013; Salgado-Pabon et al, 2013; Waterhouse et al, 2018).

While rhesus monkeys and baboons are highly resistant to endo-

toxin and have a separate pattern of host response (Barreiro et al,

2010), squirrel monkeys have a relatively high sensitivity (Lipton &

Fossler, 1974). Studying naturally sick animals (Werners, 2017) or

non-laboratory-bred animals could also be informative as their

immunity and host response will differ.

Should the main goal be to save life or to improve quality of life
after sepsis?
With such a provocative question, we want to address whether

trials should aim at improving mortality benefit and/or improving

patient selection. With a current hospital mortality rate of 25%,

achieving a 20% improvement in mortality with a P value below

0.05 requires inclusion of 1,191 patients. Arguments are however

made to increase the default P value threshold to 0.005 for claims of

discovery (Benjamin et al, 2018), thus requiring many more

patients, or reducing the sample size by a Bayesian approach

(Goligher et al, 2018). Others argue for adaptive trial designs with

simultaneous inclusion of several treatment arms and modifications

justified by findings emerging during the trial (Talisa et al, 2018).

However, adequate group sizes in such a heterogenous critical care

population may prove to be problematic.

Another challenge lies in accurate selection of therapeutic targets

that have a realistic probability of improving survival from sepsis.

Possible ways to improve translational research are discussed

below. Furthermore, selection of targets based upon observational

clinical trials can also be misleading. There is a confounding effect

of illness severity that may not be adequately adjusted for in post

hoc analyses. For example, a positive fluid balance is linked to

worse outcomes, yet sicker patients generally need more fluid

replacement and are more likely to have concurrent renal dysfunc-

tion. Thus a positive fluid balance may be epiphenomenal rather

than necessarily causative of a higher mortality. Furthermore,

changes in a blood mediator level linked to a poor outcome can be

part of the host response to injury, or even a protective element

related to disease tolerance (Medzhitov et al, 2012; Bauer et al,

2018).

Enhancing survivorship is gaining increasing attention as many

of the 70% of septic patients discharged from hospital will suffer

from post-sepsis physical, psychological, and/or cognitive impair-

ments, with consequences for the patients, their family and the

healthcare system (Prescott & Angus, 2018). Contributing factors to

poor survivorship comprise underlying frailty and comorbidities,

degree and duration of illness severity, lack of early rehabilitation,

and drugs, such as corticosteroids, sedatives and paralyzing agents.

While frailty and underlying comorbidities are not usually correct-

able, identification of interventions for reversible conditions will

hopefully lead to enhanced recovery (Schweickert et al, 2009; Wade

et al 2019).

As described at the beginning of this article, we pointed out that

many people die “with” rather than “from” sepsis because of their

significant underlying comorbidities, which both compromise their

initial host response and/or the subsequent recovery pathway. A

treatment may be effective in reversing the acute septic illness, yet

the patient still dies in the hospital because of frailty and/or preex-

isting organ dysfunction. Length of stay and duration of mechanical

support will also be longer in such patients, confounding any benefi-

cial effect on time to recovery and ICU or hospital discharge in less

sick survivors. In view of the many available prognosticators—

physiological, biochemical, and molecular—that can identify likely

survival at an early stage in the patient’s hospital admission, the

possibility of better trial stratification is intriguing. Predicted survi-

vors can be separated from predicted non-survivors. In the former,

the focus could be on time to recovery and quality of survivorship

with unanticipated death used as a safety signal. On the other hand,

a mortality signal can be primarily sought in predicted non-survi-

vors, with a greater treatment effect being perhaps more likely in

this sicker cohort.

A personalized medicine approach
Increasing emphasis is being placed on personalized medicine

(Fig 6), and an important aspect to consider is aging. Indeed, the

links between immunosenescence and sepsis have been poorly

investigated (Martı́n et al, 2017), although immunosenescence is

associated with increased sensitivity of aged people to infection

(Fulop et al, 2018; Mannick et al, 2018). However, most experimen-

tal sepsis models are performed on murine teenagers. Mortality is far

greater in aged mice following CLP (Saito et al, 2003) or with poly-

trauma with pneumonia (Nacionales et al, 2015). The elderly

animals show enhanced coagulopathy, decreased generation of acti-

vated protein C (Starr et al, 2015), and a more pronounced cytokine

storm.

Blocking or activating specific pathways may be potentially bene-

ficial when a pathway is over- or under-expressed in patients who

fare badly, albeit with the caveat that this may represent an adaptive

rather than detrimental response. This may apply to the use of IL-1

receptor antagonism (Shakoory et al, 2016), anti-TNF therapies

(Panacek et al, 2004), or corticosteroids (König et al, 2018), where

post hoc analyses suggest benefit in those with raised ferritin, raised

IL-6 levels and low IFN-c/IL10, respectively (Table 2). On the other

hand, a post hoc analysis of a clinical trial showed that a transcrip-

tomic signature suggestive of a more immunocompetent profile

fared significantly worse with steroid therapy (Antcliffe et al, 2019).
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Analysis of clinical data from more than 20,000 patients identified

four distinct clinical phenotypes with different host-response patterns

(Seymour et al, 2019). Computer simulations suggested that the

distribution of particular phenotypes could affect the trial outcome.

Others have suggested identifying patients with a major immunosup-

pressive profile (Hotchkiss et al, 2013; Bermejo-Martin et al, 2016)
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Figure 6. Strategies to enrich treatment-sensitive subpopulations of patients.

At the admission, patient is subjected to supportive therapies and samples are taken for laboratory analyses. The flowchart on the left side shows current approach to stratify
the patients using relatively simple methods such as clinical scales, mediator concentrations, or activation of immune cells. Then basing on the thresholds patients are
qualified or not to a given specific therapy. This approach is already used in some clinical trials and for some biomarkers feasible at the bedside. On the right, a procedure of
future individual medicine is presented. It involves a more complicated approach which applies potent analytical platforms to assess the genome, transcriptome,
proteinome, and metabolome of the patient. Together with metagenome of the pathogen, the decision is made on the drug to prescribe as well as its dose and timing.

Table 2. Examples of clinical trials that showed benefits in subgroups of septic patients.

Drug/intervention Subgroups Benefit Mode of analysis References

Afelimomab (anti-tumor
necrosis factor F(ab’)2
monoclonal antibody
fragment)

IL-6 > 1,000 pg/ml 28-day mortality 43.6%
vs. 47.6% placebo

Prospective Panacek
et al
(2004)

GM-CSF Monocytic HLA-DR < 8,000 antibodies per
cell

Time of mechanical
ventilation 148 � 103
vs. 207 � 58 h
(placebo), P = 0.04

Prospective Meisel
et al
(2009)

Anakinra (IL-1 receptor
antagonist)

Features of hemophagocytic
lymphohistiocytosis (disseminated
intravascular coagulation (DIC),
thrombocytopenia and hepatobiliary
dysfunction)

28-day mortality 34.6%
vs. 64.7% placebo

Re-analysis of de-identified data
from the phase III randomized
interleukin-1 receptor antagonist
trial in severe sepsis

Shakoory
et al
(2016)

Trimodulin (polyclonal
immunoglobulin
preparation)

CRP ≥ 70 mg/l and IgM ≤ 0.8 g/l 28-day mortality 11.8%
vs. 36.6% placebo
(P = 0.006)

Exploratory post hoc Welte et al
(2018)
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though this may be less promising than anticipated (Cavaillon et al,

2014). A recent study on 700 transcriptomic profiles suggested that

patients with bacterial sepsis could be divided into “inflammopathic”,

“adaptive”, and “coagulopathic” clusters (Sweeney et al, 2018a),

with each state potentially corresponding to different therapeutic

approaches. A summary of transcriptomic studies exploring subgroup

responses can be found in Table 3. While intriguing, such approaches

have yet to be tested prospectively, let alone validated.

Table 3. Described endotypes of sepsis. Heterogeneity of the host response to sepsis is a major cause of difficulties in the development of effective
targeted therapies. By the use of genome-wide expression assays, different patterns of transcriptomic response (of blood leukocytes) in sepsis are
distinguished. Unraveling these patterns creates opportunities to find new pathways that can be targeted in a given subgroup. The term endotype
is used to distinguish the transcriptome-based diversity from the classical phenotypic description.

Endotypes Methodology Studied group Implications References

Subclass A: repression of adaptive
immunity and zinc-related biology
Subclass B
Subclass C

Genome-wide expression profiling,
unsupervised hierarchical clustering
of genes which expression was ≥ 2-
fold changed (comparing to controls)
in 25–50% of patients

Children with septic
shock (n = 98)

Identification of high-risk
subpopulation by subclass An
assessment identification of novel
therapeutic targets

Wong et al
(2009)

Subclass A
Subclass B

Multiplex mRNA quantification
platform to analyze the expression of
the 100 subclass-defining genes

Children with septic
shock (n = 168)

Development of a method for
endotyping pediatric septic shock
Identification of endotype (A)
associated with the harmful effects
of glucocorticosteroids

Wong et al
(2015)

Mars1: immunosuppression, increase
in heme biosynthesis pathway
components
Mars2: increased expression of genes
related to pattern recognition,
cytokines, cell growth
Mars3: adaptive immunity; IL-4, NK-
cell signaling
Mars4: interferon signaling, pattern
recognition, TREM1 signaling

Genome-wide expression Sepsis (n = 306),
validation cohort
(n = 216), second
validation cohort
(CAP sepsis n = 265)

Mars1 type response is related to
poor early- and long-term outcome

Sclicluna
et al
(2017)

SRS1 (Sepsis Response Signature 1):
immunosuppression,
T-cell exhaustion, endotoxin
tolerance
SRS2: proliferation, immune
response, cell adhesion

Genome-wide microchip array,
variation in global gene expression
by unsupervised hierarchical
clustering

Sepsis due to CAP
(n = 265 and
validation cohort
n = 106)

SRS1 is a predictor of high early
mortality

Davenport
et al
(2016)

SRS1: cell death, apoptosis,
endotoxin tolerance
SRS2: cell adhesion, differentiation,
proliferation, immune response

Genome-wide Microarray, variation
in global gene expression

Fecal peritonitis
sepsis(n = 117) (also
comparison with
CAP; n = 126)

SRS1 is a denominator of high early
mortality, but the shift to SRS2
pattern is a marker of favorable
prognosis

Burnham
et al
(2017)

Endotype A
Endotype B

Retrospective analysis of
transcriptomic data using pattern of
100 genes expression

Sepsis (n = 549) Highest mortality in patients
< 40 y.o. co-allocated into endotype
A/SRS1. Suggestion of relationship
between immunosuppressive
response and mortality

Wong et al
(2017a)

Endotype A
Endotype B

Retrospective classification and
regression tree analysis of
retrospective data to find the
smallest discriminatory set of genes

Septic children
(n = 300); validation
group (n = 43)

Development of four-gene based
protocol for endotyping of septic
children.
Potential to identify glucocorticoid
responses

Wong et al
(2017b)

SRS1
SRS2

Genome-wide microarray, allocation
based on the generalized linear
model based on 7 genes (from
Davenport et al, 2016)

Sepsis (n = 177) Hydrocortisone treatment increases
mortality in SRS2

Antcliffe
et al
(2019)

Inflammopathic: pro-inflammatory,
complement pathways
Adaptive: adaptive immunity and
interferon signaling
Coagulopathic: platelet
degranulation, coagulation cascade

Genome-wide expression Retrospective
analysis of septic
patients (n = 700)
from 14 trials

Identification of major deregulated
pathways in endotypes that can
direct selective treatment

Sweeney
et al
(2018a)

CAP, community acquired pneumonia; SRS, sepsis response signature.

ª 2020 The Authors EMBO Molecular Medicine 12: e10128 | 2020 13 of 24

Jean-Marc Cavaillon et al EMBO Molecular Medicine



Clearly, this branch of diagnostics is still in its relative infancy.

Advances in platform technology such as next-generation sequenc-

ing with interrogation of the whole genome will open up important

new insights, as will the rapidly advancing areas of metagenomics,

metabolomics, and proteomics. The time to access data will be

dramatically reduced, enabling results within minutes to hours, a

timeline that is crucial for intervention in a critically ill patient. PCR

and multiplex protein point-of-care technologies already exist and

yield results within this timeline; such devices will continue to

become more refined and sophisticated. Crucially, standardization,

or at least cross-validation, of the different platforms and computer

analytic techniques will be needed to ensure consistency. A further

point to consider is the current reliance on blood sampling and

extrapolation of results from either predominantly white cells, or

circulating humoral mediators (e.g., cytokines, hormones, metabo-

lites), to changes at the organ level. An excellent but sadly over-

looked rat CLP study showed markedly different transcriptomic

changes between lung, liver, kidney, thymus, spleen, and brain,

both spatially and temporally (Chinnaiyan et al, 2001). Pathophysi-

ological assumptions made from circulating blood cells may not

hold true in the overall scheme.

Revisiting old strategies or new approaches?

As mentioned earlier, many approaches that were successful in

preclinical models and Phase II clinical trials have failed at the larger

multi-centre trial stage. The increasing appreciation of different pheno-

types/endotypes within the syndrome of sepsis and post hoc analyses

of trial data suggesting outcome benefit (e.g., Calfee et al, 2018 and

statins), or detriment (Antcliffe et al, 2019, and steroids) in specific

subsets, does suggest that these old agents could be gainfully revisited,

especially with the advent of diagnostics enabling rapid subset identifi-

cation. IL-1Ra therapy could be considered for patients with a

hemophagocytosis profile (Shakoory et al, 2016), recombinant soluble

thrombomodulin in those with a coagulopathic profile (Kato & Matsu-

ura, 2018), or intravenous immunoglobulin (IVIg) in those with a

hyperinflammatory profile (Welte et al, 2018). Immunostimulant

drugs such as interferon-gamma and GM-CSF are also being re-

explored, using lymphopenia as a surrogate for immunosuppression.

Non-drug approaches, such as hemofiltration and blood purification

techniques, may also show benefit when targeting specific subsets

rather than general populations (e.g., Payen et al, 2009; Gaudry et al,

2016; Dellinger et al, 2018; Hawchar et al, 2019).

The same argument should be applied to novel investigational

drugs. Many are in a clinical testing phase, but it is imperative that

they be tested in optimal population subsets. For example, a dose-

finding phase II trial (Adrenoss-2) has just been completed for adre-

cizumab in patients with septic shock and elevated concentrations of

circulating bio-adrenomedullin (Geven et al., 2019). Other approaches

are also being studied, including electroacupuncture, which showed

benefit in endotoxic mice (Torres-Rosas et al, 2014) and more

recently, anti-inflammatory bowel-protective effects on intestinal func-

tions in patients with sepsis-induced intestinal dysfunction (Meng

et al, 2018).

There are multiple other agents being studied at present in

preclinical models targeting a wide range of inflammatory, immune,

metabolic, bioenergetic, and hormonal pathways (Dalli et al, 2014;

Tancevski et al, 2014; Winkler et al, 2017; Rathkey et al, 2018;

Sham et al, 2018). Transfer of mesenchymal stem cells appeared

promising in preclinical studies, and phase 1 and 2 clinical trials are

ongoing (Keane et al, 2017). Preparations of exosomes from

mesenchymal stem cells (Chang et al, 2018) or endothelial progeni-

tor cells (Zhou et al, 2018) also show early promise. How many of

these approaches will proceed to clinical trials and then clinical use

remains open to question. There may be no magic target to cure

sepsis, and a combined approach could be more beneficial than

targeting a single molecule, as shown for IL-1 and IL-18 in murine

sepsis (Vanden Berghe et al, 2014), IL-1 and TNF in a rat model

(Russel et al 1995), or CD14 and factor XIa in rabbits (Nakamura

et al, 2017).

Improving survivorship

While the therapeutic emphasis has long been focused on survival,

increasing effort is now being placed on enhancing survivors’ qual-

ity of life. Below are a few approaches being examined to improve

functionality in different organs.

Protecting the brain
Minimization or avoidance of iatrogenic factors related to treatment

(e.g., prolonged use of benzodiazepine sedation, and adequate pain

treatment) and non-pharmacological modalities (e.g., physiological

light cycle, cognitive stimulation, and early mobilization) may prove

useful (Souza-Dantas et al, 2016). Existing drugs such as metformin

(Tang et al, 2017) and minocycline (Adembri et al, 2014) show

brain protective effects in experimental sepsis. The natural antioxi-

dant berberine improved survival in a rat CLP model but also motor

and cognitive functions (Shi et al, 2018).

Improving muscle function
An adequate diet with high protein intake may be pivotal in dealing

with critical illness-induced sarcopenia (Wischmeyer & San-Millan,

2015), perhaps in conjunction with an individualized physical rehabili-

tation regimen. Early rehabilitation appears to improve short-term ICU-

acquired weakness, but not long-term weakness nor mental status

(Fuke et al, 2018). Despite contradictory clinical data, neuromuscular

electrostimulation reduced muscle atrophy in endotoxemia models

(Poulsen et al, 2011; Rodriguez et al, 2012; Tanaka et al, 2016). Use of

beta-blockers to inhibit catabolism was proved to be efficient in burn

patients (Herndon et al, 2001). Anabolic hormones such as testos-

terone or growth hormone are also of interest, despite their potential

side effects (Rosenthal & Moore, 2015). However, growth hormone

increased mortality in critically ill patients (Takala et al, 1999).

Preserving immune functionality
Different strategies are proposed, ranging from boosting reagents

(Hotchkiss et al, 2013) to agents limiting the inflammatory reaction,

such as myeloid suppressor cells (McPeak et al, 2017) or regulatory

T cells (Heuer et al, 2005). Preventing T-cell exhaustion by anti-PD-

1/PD-L1, anti-CTLA-4 treatments, or IL-7 therapy, has also been

suggested (Hotchkiss et al, 2019a,b; Francois et al, 2018). Another

approach is to boost immune function by vaccination; a multi-centre

trial using a polyvalent conjugate pneumococcal vaccine is ongoing

in the UK (https://clinicaltrials.gov/ct2/show/NCT03565159).
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Conclusions

Tremendous progress in basic science together with numerous

clinical/epidemiological studies has increased our knowledge of

sepsis. However, these advances have not yet translated into the

development of effective new treatments. Rather, they have

demonstrated the complexity and heterogeneity of the syndrome,

and the need to better target interventions to the right patient

subset, at the right time, at an optimal dose and for an optimal

duration. This requires better diagnostics and theranostics to first

identify suitable patients, and then titrate treatment to an optimal

endpoint, rather than adopt a rather naı̈ve and simplistic “one-

size-fits-all” philosophy. Such diagnostics and theranostics need to

be measured rapidly to enable timely intervention, and suitable

targets where modification will impact the outcome need to be

identified. These should be tested in improved translational

preclinical models that better reflect the human illness with appro-

priate timing of treatment.

Without such a change in the approach, it is unlikely that the

battle against sepsis will succeed. It is also important to recognize

that, even with the best care, only a proportion of septic patients

can be rescued.

It is also important to rethink treatment goals for survivors as

many will suffer from multiple physical, psychological, and cogni-

tive dysfunctions that may be permanent (Tinetti et al, 2016). This

requires expansion of our understanding of the disease at the molec-

ular and cellular levels. We advocate for clinical studies that have

hypotheses that can be carefully tested in relevant long-term animal

models (Efron et al, 2015). The bridge between clinical and basic

studies in sepsis needs to be rebuilt and made two-way.

Pending issues

(i) Identification of critical pathophysiological events in development
of sepsis and distinction between causative, adaptive or
bystander phenomena.

(ii) Better understanding of the local tissue-specific responses during
sepsis.

(iii) Improvement of the preclinical models for both basic and trans-
lation research: animal models more relevant than rodents (e.g.,
rabbits, squirrel monkeys, pigs), site of infection frequently found
in human sepsis (e.g., lungs. . .), clinical isolates.

(iv) Development of integrated personalized approach that combines
clinical phenotypes, biomarkers, and endotypes unraveled by -
omics technologies, microfluidic approaches, and artificial intelli-
gence technologies.

(v) Better design of clinical trials to stratify or identify patient
populations that may benefit from treatment (prognostic or
predictive enrichment) and thus decrease heterogeneity; use
of more relevant endpoint (such as quality-of-life after sepsis).
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